
Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

Copy Constructor

A Copy constructor is an overloaded constructor used to declare and initialize an

object from another object. Prototype of copy constructor is like ClassName (const

ClassName &oldobj). Copy Constructor is of two types:

1. Default Copy constructor:

The compiler defines the default copy constructor. If the user defines no copy
constructor, compiler supplies its constructor.

2. User Defined constructor:
The programmer defines the user-defined constructor.

When Copy Constructor is called

Copy Constructor is called in the following scenarios:

1. When we initialize the object with another existing object of the same class
type. For example, Student s1 = s2, where Student is the class.

2. When the object of the same class type is passed by value as an argument.

3. When the function returns the object of the same class type by value.

Two types of copies are produced by the constructor:

1. Shallow copy
2. Deep copy

Shallow Copy

The default copy constructor can only produce the shallow copy. A Shallow copy is

defined as the process of creating the copy of an object by copying data of all the

member variables as it is. When the memory of any object is freed, the memory of

another object is also automatically freed as both the objects point to the same

memory location. This problem is solved by the user-defined constructor that creates

the Deep copy.

Example Shallow Copy

class GPL {
private:

int data;
int *ptr;

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

public:
GPL() { p=new int; }

void setdata(int data, int ptr) {
this.data = data;
this.ptr = &ptr;

}

void print() {
cout << " data : " <<data<<endl;
cout << " *ptr : " <<*ptr<<endl;

}

};

int main()

{

GPL gpl1, gpl2;

gpl1.setdata(4,7);

gpl2.showdata();

gpl2 = gpl1;

gpl2.showdata();

return 0;

}

In the above case, a programmer has not defined any constructor, therefore, the

statement Demo gpl2 = gpl1 calls the default constructor defined by the compiler.

The default constructor creates the exact copy or shallow copy of the existing object.

Thus, the pointer ptr of both the objects point to the same memory location.

data

gpl1

ptr

Memory

Pointed by

ptr
ptr

gpl2

data

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

Therefore, when the memory of any object is freed, the memory of another object is

also automatically freed as both the objects point to the same memory location. This

problem is solved by the user-defined constructor that creates the Deep copy.

Deep copy

Deep copy dynamically allocates the memory for the copy and then copies the actual

value; both the source and copy have distinct memory locations. In this way, both

the source and copy are distinct and will not share the same memory location. Deep

copy requires us to write the user-defined constructor.

class GPL
{

private:
int data;

int *ptr;

public:
GPL () { p=new int; }

GPL (GPL &obj)
{

data = obj.data;

ptr = new int;

*ptr = *(obj.ptr);

}

void setdata(int data, int ptr)

{

this.data = data;

this.ptr = &ptr;

}

void print()

{

cout << " data : " <<data<<endl;

cout << " *ptr : " <<*ptr<<endl;

}

};

int main()

{
GPL gpl1, gpl2;
gpl1.setdata(4,7);

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)

Subject: Object Oriented Programming C++ [Semester 4]

gpl2.showdata();

gpl2 = gpl1;

gpl2.showdata();

eturn 0;

}

In the above case, a programmer has defined its own constructor, therefore the

statement gpl2 = gpl1calls the copy constructor defined by the user. It creates the

exact copy of the value type data and separate copy of the memory pointed by the

pointer ptr.

Memory
ptr

 Pointed by

ptr
gpl1

data

Memory
ptr Pointed by

ptr
gpl2

data

When should we write our own copy constructor?

The problem with default copy constructor (and assignment operator) is – When we

have members which dynamically gets initialized at run time, default copy constructor

copies this members with address of dynamically allocated memory and not real copy

of this memory. Now both the objects points to the same memory and changes in

one reflects in another object, Further the main disastrous or fatal effect is, when we

delete one of this object other object still points to same memory, which will be

dangling pointer, and memory leak is also possible problem with this approach.

Hence, in such cases, we should always write our own copy constructor (and
assignment operator).

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)

Subject: Object Oriented Programming C++ [Semester 4]

Structure vs Class in C++

In C++, a structure is same as class except the following differences:

1) Members of a class are private by default and members of struct are public by
default.

2) When deriving a struct from a class or struct, default access-specifier for a base
class or struct is public. When deriving a class, default access specifier is private.

// class Derived : private Base {} // struct Derived : public Base {}

class Base class Base

{ {

public: int x; public: int x;

}; };

class Derived : Base { }; struct Derived : Base { };

int main() int main()

{ {

Derived d; Derived d;

d.x = 20; //Error d.x = 20;

return 0; return 0;

} }

// compiler error as inheritance is private // works fine as inheritance is public

Polymorphism

The word polymorphism means having many forms. Polymorphism can be defined as

the ability of a message to be displayed in more than one form. This is called

polymorphism. Polymorphism is considered as one of the important features of Object

Oriented Programming where object is behaving different way for same behavior

name. In C++ polymorphism is mainly divided into two types:

1. Compile time Polymorphism (Early Binding, Static Binding)
2. Runtime Polymorphism (Dynamic Binding or Late Binding)

Compile time Polymorphism

When it is decided at compile time before the program starts execution that what will

be the behavior of an object of a class called Compile time Polymorphism or Early

Binding or Static Binding. We have two functions with same name but

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

different number of arguments. Based on how many parameters we pass during

function call determines which function is to be called, this is why it is considered as

an example of polymorphism because in different conditions the output is different.

Since, the call is determined during compile time so it is called compile time

polymorphism. In C++ Programming Compile time Polymorphism is achieved by

following features

1. Function Overloading Polymorphism
2. Operator Overloading
3. Constructor Overloading

Compile Time

Polymorphism

Run Time

Polymorphis

Function

Overloadin

Operator

Overloadin

Virtual

Function

Example 1

#include <iostream.h>

class CompileTimePoly

{

public:

int sum(int a, int b){

return a+b;

}

int sum(int a, int b, int numc3){

return a+b+c;

}

};

int main()

{

CompileTimePoly obj;

cout<<"First Function: "<<obj.sum(10, 20)<<endl;

cout<<" Second Function: "<<obj.sum(11, 22, 33);

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

return 0;
}

Output:
First Function: 30
Second Function: 66

Example 2

class Base

{

public:

void show()

{

cout << "Base class";

}

};

class Derived:public Base

{

public:

void show()

{

cout << "Derived Class";
}

};

int main()
{

Base* b;
Derived d;

//Base class pointer

//Derived class object

b = &d;
b->show();

//Early Binding Occurs

}

Runtime Polymorphism

Function overriding or redefinition of function is an example of Runtime polymorphism

which is achieved IN C++ using virtual function. When child class declares a method,

which is already present in the parent class then this is called function overriding,

here child class overrides the parent class. In case of function overriding we have

two definitions of the same function- one is parent class and

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

one in child class. The call to the function is determined at runtime to decide which

definition of the function is to be called, that is the reason it is called runtime

polymorphism.

A virtual function

A virtual function is a member function that you expect to be redefined in derived

classes. When you refer to a derived class object using a pointer or a reference to

the base class, you can call a virtual function for that object and execute the derived

class's version of the function.

Virtual functions ensure that the correct function is called for an object, regardless of

the expression used to make the function call. Functions in derived classes override

virtual functions in base classes only if their type is the same. When calling a function

using pointers or references, the following rules apply:

1. A call to a virtual function is resolved according to the underlying type of object
for which it is called.

2. A call to a non-virtual function is resolved according to the type of the pointer or

reference.

Rules of Virtual Function

1. Virtual functions must be members of some class.
2. Virtual functions cannot be static members.
3. They are accessed through object pointers.
4. They can be a friend of another class.

5. A virtual function must be defined in the base class, even though it is not

used.

The prototypes of a virtual function of the base class and all the derived classes must

be identical. If the two functions with the same name but different prototypes, C++

will consider them as the overloaded functions. We cannot have a virtual constructor,

but we can have a virtual destructor. Consider the situation when we don't use the

virtual keyword.

class Base
{

public:

virtual void show()

{

cout << "Base class\n";

}

};

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

class Derived:public Base
{

public:
void show()
{

cout << "Derived Class";
}

};

int main()

{

Base* b;
Derived d;

//Base class pointer

//Derived class object

b = &d;

b->show();

//Late Binding Occurs

}

Using Virtual Keyword and Accessing Private Method of Derived class. We can call

private function of derived class from the base class pointer with the help of virtual

keyword. Compiler checks for access specifier only at compile time. So at run time

when late binding occurs it does not check whether we are calling the private function

or public function.

Example

#include <iostream>

class A

{

public:

virtual void show()

{
cout << "Public Member in Base class\n";

}
};

class B: public A
{

private:
void show()
{

cout << "Private Member in Derived class\n";

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

}
};

int main()
{

A *a; B

b; a =

&b;
a->show();

}

Output: Private Member in Derived class

The above main function is able to call private member of Class B. This creates

security threats in program because private member is not accessible outside the

scope of the class.

Mechanism of Late Binding in C++

To accomplish late binding, Compiler creates VTABLEs, for each class with virtual
function. The address of virtual functions is inserted into these tables. Whenever an
object of such class is created the compiler secretly inserts a pointer called vpointer,
pointing to VTABLE for that object. Hence when function is called, compiler is able to
resolve the call by binding the correct function using the vpointer.

vptr : Virtual Pointer that points to function of class to which Object belongs to.
VTable : Virtual Table that stores addresses of virtual functions.

 Derived1: Object

B1

&Derived1:: show()

vptr

Derived2: Object

B2

vptr

&Derived2:: show()

Base Class Pointers

Objects of Derived Class

 VTable

Ambiguity Caused in Function Overloading

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

When the compiler is unable to decide which function is to be invoked among the

overloaded function, this situation is known as function overloading. When the

compiler shows the ambiguity error, the compiler does not run the program.

Ambiguity in function overloading is caused by

1. Type Conversion.
2. Function with default arguments.
3. Function with pass by reference.

Type Conversion

void fun(int i)

{

cout << "Value of i is : " <<i<< endl;
}
void fun(float j)
{

cout << "Value of j is : " <<j<< endl;
}
int main()
{

fun(12);

fun(1.2); // This Will Cause Error 1.2 is double
return 0;

}

The statement fun(1.2) calls the second function according to our prediction. But,

this does not refer to any function as in C++, all the floating point constants are

treated as double not as a float. If we replace float to double in void fun (float j), the

program works. Therefore, this is a type conversion from float to double.

Function with default arguments.

void fun(int a)

{

cout << "Value of i is : " << a << endl;

}

void fun(int a, int b=9)

{

cout << "Value of a is : " << a << endl;

cout << "Value of b is : " << b << endl;

}

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

int main()

{

fun(12);

return 0;

}

The above example shows an error "call of overloaded fun(int) is

ambiguous". The fun (int a, int b=9) can be called in two ways: first is by

calling the function with one argument fun(12) and another way is calling the

function with two arguments fun(4,5). Therefore, the compiler could not be

able to select among fun(int a) and fun(int a, int b=9).

Function with pass by reference.

void fun(int x) {

cout << "Value of x is : " << x << endl;

}

void fun(int &b) {

cout << "Value of b is : " << b << endl;

}

int main() {

int a=10;

fun(a); // Error, which f()?

return 0;

}

The above example shows an error "call of overloaded 'fun(int&)' is

ambiguous". The first function takes one integer argument and the second

function takes a reference parameter as an argument. In this case, the

compiler does not know which function is needed by the user as there is no

syntactical difference between the fun(int) and fun(int &).

Operator Overloading

Operator overloading is a compile-time polymorphism in which the operator is

overloaded to provide the special meaning to the user-defined data type and the

operator can be operated on user defined data variables as well. Operator overloading

is used to overload or redefines most of the operators available in C++.

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

It is used to perform the operation on the user-defined data type. For example, C++

provides the ability to add the variables of the user-defined data type that is applied

to the built-in data types.

The advantage of Operators overloading is to perform different operations on the
same operand.

Operators that cannot be overloaded are as follows:

1. Scope operator (::)
2. sizeof
3. member selector(.)
4. member pointer selector(*)
5. ternary operator(?:)

Rules for Operator Overloading

1. Existing operators can only be overloaded, but the new operators cannot be
overloaded.

2. The overloaded operator contains at least one operand of the user-defined data

type.

3. We cannot use friend function to overload certain operators. However, the
member function can be used to overload those operators.

4. When unary operators are overloaded through a member function take no explicit

arguments, but, if they are overloaded by a friend function, takes one argument.

5. When binary operators are overloaded through a member function takes one

explicit argument, and if they are overloaded through a friend function takes two

explicit arguments.

Example

class GPLG

{

private:

int branches;

public:

Test() { branches = 8;}

void operator ++(int)

{
branches = branches + 2;

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)

Subject: Object Oriented Programming C++ [Semester 4]

}

// Overload Binary Operator Using Member
Function GPLG operator+ (const GPLG arg)
{

GPLG temp;

temp. branches = arg. branches + this. Branches;
return temp

}

// Overload Binary Operator Using Friend Function

friend GPLG operator + (const GPLG &arg1, const GPLG &arg2)

{
GPLG temp;

temp. branches = arg1. branches + arg2. Branches;
return temp

}

void print()

{

cout<<"The Branch Count is: "<< branches;
}

};

int main()

{

GPLG gplg1, gplg2, gplg3;

gplg1++; // calling : "void operator ++()"

gplg3 = gplg1 + gplg2; // calling : "GPLG operator +(GPLG arg)"
print (gplg1);

}

Output: The Branch Count is: 10

Operator Overloading: Examples

class Person

{

private:

int height, weight;

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)

Subject: Object Oriented Programming C++ [Semester 4]

public:

Person (int h = 0, int w =0) {

real = h; imag = w;

}

friend ostream & operator << (ostream &out, const Person &p);

friend istream & operator >> (istream &out, const Person &p);

};

ostream & operator << (ostream &out, const Person &p);

{

out << ”Height: ” << p.height;

out << “Weight: ” << p.weight <<
endl; return out;

}

istream & operator >> (istream &in, const Person &p);

{

cout << "Enter Height: ";

in >> p.height;

cout << "Enter Weight: ";

in >> p.weight;

return in;

}

Example Overloading Array [] Operator

Function int &Array::operator[](int index) returns a reference as array element can
be put on left side of assignment.

class Array

{

private:

int *ptr;

int size;

public:
Array(int *, int);

int &operator[] (int);

void print() const;
};

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

// Constructor for Array Class Act as Default and Parameterized.

Array::Array (int *p = NULL, int s = 0)
{

size = s;

ptr = NULL;

if (s != 0)

{
ptr = new int[s];

for (int i = 0; i < s; i++)

ptr[i] = p[i];

}

}

// Overloading [] operator to access elements in array style.

int &Array::operator[](int index)

{

if (index >= size)
{

cout << "Array index out of bound, exiting";
exit(0);

}

return ptr[index];

}

void Array::print() const

{

for(int i = 0; i < size; i++)

cout<<ptr[i]<<" ";

cout<<endl;
}

int main()
{

int a[] = {1, 2, 4, 5};

// Integer Array

Array arr1(a, 4);

// Constructor Call

arr1[2] = 6;

// Overloaded Operator []

arr1[8] = 6;

// Overloaded Operator []

return 0;

}

Example Overloading () Function Call Operator

Government Polytechnic Narendra Nagar(T.G)

(Branch - Information Technology)
Subject: Object Oriented Programming C++

[Semester 4]

class GPL
{

private:
int branches;
int laboratory;
int classrooms;

public:

//default constructor of Class GPL

GPL () {

branches = 0;

baboratory = 0;

classrooms = 0;

}

// Following Implementation is overloaded () function call
operator GPL operator()(int branch, int lab, int room)
{

GPL gpl;

gpl.branches = branch;

gpl.baboratory = lab;

gpl.classrooms =

room; return gpl;
}

};

int main()

{

GPL gpl1, gpl2; // Constructor Call

gpl2 = gpl1 (5, 12, 10); // Overloaded Function Call Operator Call

}

